
Voici la correction de l' exercice 1 : 1) Compléter les propriétés des puissances : a 0 = 1 a^0 = 1 (pour a ≠ 0 a \neq 0 ) ( a n ) m = a n ⋅ m (a^n)^m = a^{n \cdot m} 1 a n = a − n \frac{1}{a^n} = a^{-n} a m ⋅ a n = a m + n a^m \cdot a^n = a^{m+n} a m a n = a m − n \frac{a^m}{a^n} = a^{m-n} (pour a ≠ 0 a \neq 0 ) ( a ⋅ b ) n = a n ⋅ b n (a \cdot b)^n = a^n \cdot b^n ( a b ) n = a n b n \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} (pour b ≠ 0 b \neq 0 ) 2) Écrire les nombres sous la forme a n a^n : A = 2 2 × x 2 × 2 3 A = 2^2 \times x^2 \times 2^3 A = 2 2 + 3 × x 2 = 2 5 × x 2 A = 2^{2+3} \times x^2 = 2^5 \times x^2 . B = 2 3 ⋅ ( 7 5 ) − 2 B = \frac{2}{3} \cdot \left(\frac{7}{5}\right)^{-2} B = 2 3 ⋅ ( 5 7 ) 2 = 2 3 ⋅ 25 49 = 50 147 B = \frac{2}{3} \cdot \left(\frac{5}{7}\right)^2 = \frac{2}{3} \cdot \frac{25}{49} = \frac{50}{147} . C = 7 5 ⋅ 7 5 ⋅ 7 5 ⋅ 7 5 ⋅ 7 5 C = \frac{7}{5} \cdot \frac{7}{5} \cdot \frac{7}{5} \cdot \frac{7}{5} \cdot \frac{7}{5} C = ...